Developing advanced nanocomposites from biorenewable resources

Bioinspired Surface Engineering for Energy Storage, Harvesting, Biomedical and Beyond

Transforming Dairy and Agricultural Waste into High-Value Materials

Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context

Microbial production of pigments using waste biomass

Microbial biodiesel production from lignocellulosic biomass

Cellular pathways, enzymes, and organelles involved in the carbohydrate to lipid conversion

Additive Manufacturing of Advanced and Sustainable Materials

Plant-based green hydrogels in biomedical engineering and environmental applications

Next Generation photocatalysts for water treatment

Enzyme and microalgae based biotechniques to remediate micropollutants from aqueous systems

treatment (microbes, enzymes, microalgae)

Engineering Biochar for Soil Contaminated with Complex Chemical Mixtures

Transcription factor engineering to improve plant cell wall degradation and fermentative process

TRANSCRIPTION FACTOR ENGINEERING			
	Process	Overexpression	Deletion/ Inactivation
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 YAP1 SPT15 SPT3 MSN2 HAA1 STB5 WAR1 CAT8 PDR8 PUT3 GZF3 	 CIN5 MIG1 MSN2
Hydrolysis 2		 xyr1 ace2 ace3 lae1 vel1 	 cre1 ace1 rce1
Fermentation Fermentation 3 Ethanol and other biomass-derived products	3	GCR1 NRM1	 TUP1 CYC8 TH12 ASK10

Bio-based Sustainable Monomers and Polymers

Sustainable composite materials for a circular economy

New approaches towards the design and synthesis of antiviral and antimicrobial Antimicrobian according Syn. Cherry materials hicrobes Anti-infective Metals profile (Bio)polymers Synthetic & Green Nanoparticles **Chemistry routes** approach $R_1 > C = N - N < R_3 = R_4$ Killing Hydrazone Anti-repellent 4 agents surface philons Contact killing Lipid extraction Structure activity USIVEUS Patents granted relationship on hydrazones Cotton **CA** Membrane Synthesis iomedicai Application > Modification Cellulose Acetate (CA)

New Materials for Advanced Applications

