Innovation: Improving beef efficiency
Step change in genetic (and genomic) improvement in Scottish beef industry.
What is the value of genetic selection? (US dairy cows)

In 2015: 1957 base was 44% of total fat, management was 28% of gains, and genetics was 28% of gains.

From John Cole, AIPL
Current information in breeding values

Performance data

EBV

Progeny

Pedigree
Tracing genes through pedigree
Tracing genes through pedigree vs genome

This lab estimates your genome-wide percentage of Neanderthal ancestry

Got Neanderthal DNA?

An estimated 2.9% of your DNA is from Neanderthals.

Eileen Wall (you) 2.9% 87th percentile
Average European user 2.7%

MODERN HUMANS
- Higher brow
- Narrower shoulders
- Slightly taller

NEANDERTHALS
- Heavy eyebrow ridge
- Long, low, bigger skull
- Prominent nose with developed nasal chambers for cold-air protection
Current information in breeding values - DNA add genomic prediction

- Performance data
- Genomic result
- gEBV
- Pedigree
- Progeny
Genomic selection impacts genetic gain

\[\Delta G_{\text{year}} = \sqrt{\text{reliability} \times \text{selection intensity} \times \sqrt{\text{genetic variance}}} \times \text{generation interval} \]

- \(\Delta G = \) genetic gain each year
- reliability = how certain we are about our estimate of an animal’s genetic merit (genomics ↑)
- selection intensity = how selective we are when making mating decisions (management can ↑)
- genetic variance = variation in the population due to genetics
- generation interval = time between generations (genomics ↓)
Beef Genomics
Genetic trends in Charolais

YEAR

EBW

200 Day milk
200 Day Growth
400-Day Growth
.... And over in Ireland

- Genetic progress focused on terminal traits, with little progress attained in maternal traits.
Why maternal and calf traits?

- Most cows are 36 months when they have their first calf
- Huge potential to reduce to 24 months (where appropriate)

Distribution of age at first calving (months)

- 31 months in BES
- Calv Int = 398 days
Why maternal and calf traits?

- Most cows are 36 months when they have their first calf
- Huge potential to reduce to 24 months (where appropriate)

1 Davies I. (2016, 03), Late-calving heifers costs beef farmers £4,000/year, http://www.fwi.co.uk/business/late-calving-heifers-costs-beef-farmers-4-000-year.htm
Improving Maternal Beef traits

• Selection focused on beef growth and carcass traits has neglected many maternal traits

• Initiatives to improve maternal beef herds through increased use of improved maternal genotypes and genomic selection
 – Scotland Beef Efficiency Scheme (BES)
 ➢ Improve herd profitability
 ➢ Reduce greenhouse gas (GHG) emissions
BES impact prediction

- Predict effects of farmer sourcing elite maternal genotypes to breed herd replacements

Maternal Dual Purpose Index

Maternal Sub-index
- Mature weight (heifer, cow, cull cow)
- Calving interval
- Age at first calving
- Longevity
- Gestation length
- Calving ease

Terminal Sub-index
- Beef value
Genetic effect of Elite Maternal sires

Elite maternal +£30 sires used for 20y

Current trend = -£0.722/y

↑ Weight
↑ Calving interval
↓ Calving ease
Expressed GHG with Elite Maternal sires

+30 Elite maternal sires mated to herd for 20 years

Current Total maternal GHG trend

Replacement heifers

Breeding cows

Total maternal GHG
BES – potential benefits

- Genetic improvement value
 - £3.50/cow/year maternal traits
 - £4.11/cow/year efficiency/terminal traits
 - Permanent and cumulative

- 10 years = 270,000 t of CO2e and ~ £22m
BES – Data benefits

• Better data, and using it (!), help farmers make the best breeding and management choices.
 – better rates of calving
• A more sustainable Scottish beef sector – environmentally and economically

350,000 calvings
55,000 animals selected for genotyping
Highlights

- Sub-clustered by breed but linkages
Highlights

• Sub-clustered by breed but linkages
• 85% self calved
 – 2.2% vet assistances
Highlights

• Sub-clustered by breed but linkages

• 85% self calved
 – 2.2% vet assistances

• 73% of dams docile/quiet
 – 2.5% aggressive

• 3.5% of calves lazy/weak
 – 5X more likely to die early
Highlights

- Sub-clustered by breed but linkages
- 85% self calved
 - 2.2% vet assistances
- 73% of dams docile/quiet
 - 2.5% aggressive
- 3.5% of calves lazy/weak
 - 5X more likely to die early
- Traits from historic data
 - h^2 age @ slghtr = 17%
 - h^2 age @ 1st calf = 39%

<table>
<thead>
<tr>
<th>parity</th>
<th>CalvInt (days)</th>
<th>stdev</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>405</td>
<td>104.0</td>
<td>158,691</td>
</tr>
<tr>
<td>2</td>
<td>388</td>
<td>88.2</td>
<td>130,220</td>
</tr>
<tr>
<td>3</td>
<td>383</td>
<td>81.4</td>
<td>104,879</td>
</tr>
<tr>
<td>4</td>
<td>382</td>
<td>78.1</td>
<td>82,728</td>
</tr>
<tr>
<td>5</td>
<td>382</td>
<td>76.3</td>
<td>63,255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sire Breed</th>
<th>Age @ 1st Calf</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus</td>
<td>30.2</td>
<td>22,743</td>
</tr>
<tr>
<td>Simmental</td>
<td>30.4</td>
<td>16,663</td>
</tr>
<tr>
<td>Limousin</td>
<td>32.9</td>
<td>15,634</td>
</tr>
<tr>
<td>Stabiliser</td>
<td>26.3</td>
<td>6,641</td>
</tr>
<tr>
<td>Hereford</td>
<td>32.2</td>
<td>5,068</td>
</tr>
</tbody>
</table>
Summary

- Beef behind dairy in terms of genetic improvement
 - Lots of low hanging fruit
- Step changes in the coming years
- Genetic evaluations developed for novel traits, e.g.,
 - Feed efficiency – industry trait collection ongoing
 - Disease resistance if large enough populations can be amassed and data shared - top 5 disposal reasons where old age, infertility, born dead, pneumonia and general health
- Integration of data across farm types and industry for gEBVs for all
- Good baseline data helps implement and realise potential of innovations – genomics and wider
THANK YOU!